วันเสาร์ที่ 8 มกราคม พ.ศ. 2554

การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย (Simple Harmonic Motion)

การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย (Simple Harmonic Motion)



การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย      คือ     การที่วัตถุเคลื่อนที่กลับไปมาซ้ำรอยเดิม มักจะใช้สัญญลักษณ์ว่า SHM. ตัวอย่างของการเคลื่อนที่แบบนี้ได้แก่ การเคลื่อนที่ของวัตถุที่ถูกผูกติดไว้กับสปริงในแนวราบ แล้ววัตถุเคลื่อนที่ไปมาตามแรงที่สปริงกระทำต่อวัตถุ ซึ่งเขาจะศึกษาการเคลื่อนที่นี้จากรูปที่ 1
ในรูปที่ 1a ตำแหน่ง x = 0 เป็นตำแหน่งสมดุลของปริง หรือ เป็นตำแหน่งที่สปริงมีความยาวตามปกติ ณ ตำแหน่งนี้สปริงจะไม่ส่งแรงมากระทำต่อวัตถุ ในรูปที่ 1a นี้มีวัตถุมวล m ผูกติดกับสปริง วางอยู่บนพื้นที่ซึ่งไม่มีแรงเสียดทาน ที่ตำแหน่งซึ่งปริงยืดออกจากความยาวปกติเป็นระยะทาง A สปริงจะออกแรงดึงวัตถุมวล m กลับมาอยู่ในตำแหน่งสมดุล x = 0 เรียกแรงที่สปริงกระทำต่อวัตถุนี้ว่าแรงดึงกลับ (Restoring force) ถ้า F เป็นแรงดึงกลับนี้จะได้ว่า
                                                                                     F = -kx -----(1)


             แรงดึงกลับมีเครื่องหมายลบ เพราะทิศทางของเวกเตอร์ของแรงกับเวกเตอร์ของการขจัด x มักจะตรงข้ามกันเสมอ ค่า k คือค่านิจของสปริง (spring constant) ในรูปที่  นี้ได้กำหนดให้ทิศทางขวาเป็นบวก ดังนั้นในรูป 1a ตำแหน่ง  x = A    จึงเป็นบวก  ในขณะที่ทิศทางของแรงดึงกลับเป็นลบ และเนื่องจากวัตถุเริ่มเคลื่อนที่ที่ x = A ความเร็วของวัตถุจึงเป็นศูนย์
เมื่อปล่อยให้วัตถุเคลื่อนที่ตามแรงของสปริง วัตถุจะเคลื่อนที่มาทางซ้าย และในรูปที่ 1b วัตถุผ่านตำแหน่ง x = 0 หรือตำแหน่งสมดุลซึ่งตำแหน่งนี้
                 แรงที่สปริงกระทำต่อวัตถุจะเป็นศูนย์ แต่อัตราเร็วของวัตถุจะมากที่สุด โดยทิศของความเร็วจะเป็นจากขวาไปซ้าย หรือความเร็วเป็นลบ เนื่องจากพื้นไม่มีแรงเสียดทาน และสปริงก็ไม่ออกแรงมากกระทำต่อวัตถุ ดังนั้นที่ตำแหน่ง x = 0 นี้  วัตถุจึงสามารถรักษาสภาพการเคลื่อนที่ตามกฎข้อที่ 1 ของนิวตันไว้ได้ วัตถุจึงยังคงสามารถเคลื่อนที่ต่อไปทางซ้ายได้
                ในขณะที่วัตถุเคลื่อนที่ไปทางซ้ายนั้น วัตถุก็จะผลักให้สปริงหดสั้นไปจากความยาวเดิมด้วย ดังนั้นสปริงจะพยายามออกแรงดึงกลับไปกระทำต่อวัตถุ เพื่อให้ตัวเองกลับไปสู่ความยาวปกติอีก จนในรูปที่  1  C  แสดงถึงขณะที่วัตถุเคลื่อนที่ไปทางซ้ายมากที่สุด ความเร็วของวัตถุจะเป็นศูนย์ทิศของแรงดึงกลับจากซ้ายไปขวา หรือเป็นบวก เวกเตอร์ของการขจัดของวัตถุมีทิศจากขวาไปซ้าย และมีขนาดเป็น A ดังนั้นตำแหน่งของวัตถุขณะนี้จึงเป็น  x  =  -A 
                  มีข้อน่าสังเกตว่า ขนาดของการขจัดมากที่สุดของวัตถุไม่ว่าจะเป็นทางซ้ายหรือขวาจะเท่ากัน คือเป็น a เนื่องจากในรูป 1c นี้มีแรงมากระทำต่อวัตถุเพียงแรงเดียว คือแรงจากสปริง ซึ่งมีทิศไปทางขวา วัตถุจึงเคลื่อนที่กลับไปทางขวาด้วยอิทธิพลของแรงนี้
รูปที่1


ในรูป 1d วัตถุกลับมาที่ตำแหน่งสมดุลของสปริงอีกครั้งหนึ่ง เช่นเดียวกับในรูป 1b แต่ในขณะนี้วัตถุมีความเร็วเป็นบวก หรือไปทางขวาวัตถุจึงยืดสปริงออกไป โดยยืดได้มากที่สุดถึงตำแหน่ง x = A ดังแสดงในรูป 1 e ซึ่งเป็นสถานเดียวกับรูป 1a ดังนั้นการเคลื่อนที่ของวัตถุจึงกลับมาในลักษณะเดิม คือจาก  1a  -  1b  -  1c  -  1d   - 1e  -  1a  เป็นอย่างนี้เรื่อยไป  ซึ่งจะเห็นว่าวัตถุมีการเคลื่อนที่กลับไปมาซ้ำของเดิม จึงเป็นการเคลื่อนที่แบบ  SHM.


มีข้อพึงระลึก    จากสมการที่ (1) หรือ F = -kx ว่า วัตถุที่เคลื่อนที่แบบ SHM นั้น นอกจากจะเคลื่อนที่กลับไปมาซ้ำรอยเดิมแล้ว แรงดึงกลับที่กระทำต่อวัตถุยังแปรผันโดยตรงกับการขจัดของวัตถุอีกด้วย
ในการศึกษาการเคลื่อนที่แบบ SHM นี้ จะต้องกำหนดปริมาณต่าง ๆ ดังต่อไปนี้
- การขจัด (dis placement) คือระยะทางที่วัตถุเคลื่อนที่ไปได้โดยนับจากจุดสมดุล
- อัมปลิจูด (amplitude) คือระยะทางมากที่สุดที่วัตถุจะสามารถเคลื่อนที่ไปได้โดยนับจากจุดสมดุลเช่นเดียวกัน อาจจะพิจารณาได้ว่าอัมปลิจูดก็คือการขจัดมากที่สุดนั่นเอง
- คาบ (period) คือเวลาที่วัตถุใช้ในการสั่น 1 รอบ (เช่นจากรูป 1a ถึง 1e)
- ความถี่ (frequency) คือจำนวนรอบที่วัตถุสั่น หรือเคลื่อนที่ได้ใน 1 วินาที จากนิยามเหล่านี้ ถ้า f เป็นความถี่ และ T เป็นคาบ จะได้ว่า T = 1/f



พลังงานของวัตถุที่เคลื่อนที่แบบ SHM.     ในการยืดหรือหดสปริง จะต้องมีแรงภายนอกไปกระทำต่อสปริงทำให้เกิดงานขึ้น ทั้งนี้เพราะในการยืดหรือหดของสปริงนั้น พลังงานศักย์ ของสปริงจะเพิ่มขึ้น จากนิยามของพลังงานศักย์ที่ว่า "พลังงานศักย์ของวัตถุ ณ จุดใด คืองานที่ใช้ในการเคลื่อนที่วัตถุจากจุดอ้างอิงไปยังจุดนั้น" ถ้า F เป็นแรงที่กระทำต่อสปริงแล้วทำให้สปริงยืด (หรือหด) เป็นระยะทาง x จากตำแหน่งสมดุล จะได้ว่า  
งานที่ทำต่อสปริง = Fx

ถ้าให้ตำแหน่งสมดุลเป็นตำแหน่งอ้างอิง จะได้ว่า
พลังงานศักย์ของสปริงที่ตำแหน่ง x ใด ๆ = Fx
แต่ในการยืดหรือหดของสปริงนี้ แรงที่กระทำต่อสปริงจะไม่คงที่ โดยจะขึ้นกับระยะทาง ดังนั้นแรง F จึงเป็นแรงเฉลี่ย โดยจะเฉลี่ยระหว่างแรงที่กระทำต่อสปริงที่ตำแหน่ง x = 0 และที่ x ใดๆ



            นั่นคือ





ดังนั้น พลังงานศักย์ของสปริงที่ตำแหน่ง x ใด ๆ


เนื่องจาก แรงที่สปริงกระทำต่อวัตถุเป็นแรงอนุรักษ์ ดังนั้นพลังงานทั้งหมด (total energy) ของวัตถุที่เคลื่อนที่ภายใต้อิทธิพลของแรงสปริงจึงคงที่ ถ้า E เป็นค่าพลังงานทั้งหมดนี้ จะได้ว่า ที่ตำแหน่ง x ใด ๆ ซึ่งวัตถุมีความเร็วเป็น v ใด ๆ (ดังแสดงในรูป 2d) จะได้ว่า








รูปที่2




ในรูปที่ 2 แสดงการเคลื่อนที่ของวัตถุมวล m ที่ผูกติดกับสปริงเคลื่อนที่บนพื้นราบที่ไม่มีแรงเสียดทาน
เช่นเดียวกับในรูปที่ 1 ในรูป a วัตถุอยู่ในตำแหน่ง x = A ซึ่งเป็นค่าอัมปลิจูดของการเคลื่อนที่ ณ ตำแหน่งนี้
วัตถุมีความเร็วเป็นศูนย์ จึงมีแต่พลังงานศักย์ซึ่งมีค่ามากที่สุด
                                                                 




ในรูป b วัตถุอยู่ในตำแหน่งสมดุล การขจัด x เป็นศูนย์ แต่มีอัตราเร็วมากที่สุด ที่ตำแหน่งนี้จึงมีพลังงานศักย์เป็นศูนย์
แต่มีพลังงานจลน์มากที่สุด ถ้า v0 เป็นอัตราเร็วที่ตำแหน่งนี้จะได้ว่า
                                                                





ในรูป c วัตถุอยู่ในตำแหน่ง x = - A ซึ่งก็เป็นอัมปลิจูดเช่นเดียวกันและเหมือนกับในรูป a
ความเร็วของวัตถุเป็นศูนย์ วัตถุจึงมีพลังงานจลน์เป็นศูนย์ ในขณะที่มีพลังงานศักย์มากที่สุด
                                                                





รูป d เป็นตำแหน่งของวัตถุที่ x ใด ๆ วัตถุมีความเร็วเป็น v ใด ๆ ดังที่ได้อธิบายไว้แล้ว จึงได้
                                                                




ตัวอย่างการเคลื่อนไหว Simple Harmonic Motion
                        
                                       


                                                    

     



















                                


       จากภาพจะเห็นว่าเมื่อวัตถุสีเหลืองเคลื่อนที่เป็นวงกลม  เงาของวัตถุบนฉากจะเคลื่อนที่
เป็นเส้นตรงกลับไปกลับมา เรียกการเคลื่อนที่แบบซ้ำรอยเดิมนี้ว่า การเคลื่อนที่แบบซิมเปิลฮาร์โมนิค 
  (Simple Harmonic Motion)    หรือ การเคลื่อนที่แบบ S.H.M                 




            




               วิดีโอตัวอย่าง Simple Harmonic Motion



                  


          


                                  





อ้างอิง












 


7 ความคิดเห็น:

  1. เรื่อง การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย ทำให้ผู้อ่านได้รับประโยชน์และความรู็พอสมควร ประกอบกับภาพเคลื่อนไหวและคลิปวีดีโอ เป็นสื่อ ทำให้เข้าใจได้ง่าย แนะค่ะ น่าจะจัดระเบียบให้เรียบร้อย จะทำให้บล๊อคน่าดูยิ่งขึ้นค่ะ

    ตอบลบ
  2. ขอบคุณสำหรับคอมเม้นจ้า ^^

    ตอบลบ
  3. อ่านแล้วลายตามากเลยนะคะ ถ้าปรับให้ลายน้อยกว่านี้ จะสบายตามากเลย
    การจัดรูปแบบยังไม่ OK การบรรยายต่าง ๆ ไม่ควรติดกันตลอด และถ้ามีการคำนวณต้องมีตัวอย่างด้วยนะคะ....ชิ้นหน้าต้องทำได้ดีกว่านี้แน่นอน..สู้ ๆ เป็นกำลังใจให้นะคะ

    ตอบลบ
  4. วี อย่าลืมแก้ไขงานตามที่ครูบอกนะ จะได้ดีขึ้น
    ^^~ เป็นกำลังใจอีกแรง 55+

    ตอบลบ
  5. มีความพยายามที่แก้ไข...ทำไมบางช่วงมีที่ว่างมาก ไม่ต่อเนื่อง..ลองปรับอีกครั้งนะคะ...จะ OK ที่เดียวแหละ

    ตอบลบ
  6. เกือบ OK ถ้าอธฺิบายประกอบ VDO ที่นำมาเสนอว่าคืออะไร สำหรับ VDO สุดท้ายเป็นความรู้ระดับมหาวิทยาลัย ครูว่ายังไม่จำเป็นนะ...ตัดออกได้
    สำหรับรูปที่แสดงตัวอย่างการเคลื่อนที่แบบ SHM นั้นมิใช่เพียงสปริงอย่างเดียวนะ..อื่น ๆ เช่น ลุกตุ้มนาฬิกา ชิงช้า..ลองอีกครั้งนะ

    ตอบลบ